
1

Using Steady-State TCP Behavior for
Proactive Queue Management

Sunil Thulasidasan Wu-chun Feng

Research and Development in Advanced Network Technology (RADIANT)
Advanced Computing Laboratory (CCS-1)

Los Alamos National Laboratory
Los Alamos, New Mexico

Abstract— This paper describes and evaluates the use
of steady-state TCP behavior knowledge for proactive queue
management (PQM). We show how routers can use flow pa-
rameters and the knowledge of TCP end-host behavior to in-
telligently mark packets to prevent queue build-up, and thus
prevent congestion from ever occurring, while at the same
time provide high link utilization and low packet loss. This is
in contrast to traditional active queue management (AQM)
schemes, where incipient congestion is detected early and
then reacted to. Using a queue management algorithm that
tracks TCP behavior allows queue sizes to be deterministi-
cally stabilized at very low levels, irrespective of the number
of flows passing through the router. An advantage of our
algorithm is that there are no parameters that need to be
tuned to achieve optimal performance in a given scenario,
thus avoiding repeated trials with different parameters – an
approach common to other AQM schemes. Further we show
that our scheme out-performs the RED and BLUE AQM
schemes with respect to queueing delay and performs as well
with respect to link utilization and packet loss.

Keywords—Congestion control, active queue man-
agement, RED, BLUE.

I. Introduction

ACTIVE Queue Management (AQM) for con-
gestion avoidance is one of the most widely

researched areas in networking. Congestion leads
to lost packets, thus wasting all the resources that
the packet may have consumed on its way from
source to destination. A persistently large queue
size at a router is regarded as an indicator of con-
gestion. The basic idea behind AQM is to pre-
vent queue build-up by detecting incipient conges-
tion early on and notifying the TCP end host by
dropping or marking packets. The typical behavior
of TCP to a dropped packet is to reduce its con-
gestion window (cwnd) in half [6]. cwnd is then
gradually built up by additively increasing it by
one packet each round-trip time (RTT) until the
next packet drop occurs. This gives rise to the well-
known “sawtooth” behavior of the TCP congestion

This paper is Los Alamos Unclassified Report LA-UR 02-
2777

window. Based on this behavior, researchers have
been able to develop mathematical models on the
steady-state behavior of TCP [7], [10]. In this pa-
per, we show how applying one of these models at
routers can help prevent queue build-up. Further-
more, queues can be deterministically stabilized
at desired levels while simultaneously maintaining
high link utilization. This quality is especially ben-
eficial to real-time multimedia applications that are
adversely affected by large queueing delays or delay
jitter.

We evaluate the performance of our mecha-
nism, called GREEN, against two well-known
AQM schemes in routers, RED [4] and BLUE [1].
GREEN performs as well as RED and BLUE in
terms of link utilization and packet loss, while
greatly out-performing both in terms of queueing
delay.

In what follows, we first describe related work
on AQM in Section II. Section III introduces our
algorithm and the mathematical model that serves
as its basis. Section IV provides a detailed evalua-
tion of the performance of GREEN in comparison
to other AQM schemes. Section VI describes im-
plementation details including methods for estimat-
ing flow parameters. Finally, Section VII concludes
with the implications of this work and directions for
future research.

II. Background

When a network is congested, connections com-
pete for scarce link bandwidth. This leads to queue
build-up at routers, and eventually to lost pack-
ets due to queue overflow. The TCP end host re-
sponds to this by reducing its congestion window in
half. However, considerable time may pass before
the sender detects a lost packet, while continuing to
send at increasing rates prior to this detection. This
leads to even more lost packets. AQM schemes try

to alleviate this problem by detecting incipient con-
gestion early on and notifying the senders. In this
paper we evaluate our algorithm against two well-
known AQM implementations, RED and BLUE.

RED [4] is the most widely studied AQM scheme.
RED uses an exponentially weighted moving aver-
age of the queue length, which is used as an indica-
tor of congestion. When the average queue length
exceeds a certain threshold, known as Qminthresh,
packets are randomly dropped or marked1 with a
probability that is proportional to the queue length.
When the average queue size exceeds the maximum
threshold, known as Qmaxthresh, all incoming pack-
ets are marked. Further, RED also prevents syn-
chronization between sources2 by avoiding tempo-
rally clustered packet drops.

Since the only indicator of congestion in RED
is queue length, RED cannot really determine the
severity of congestion because it is unaware of the
number of competing connections (N). The lack of
knowledge of N can cause congestion notification to
be either too aggressive or not aggressive enough.
Generally, when a bottleneck link is shared between
N users, congestion notification to one connection
reduces the offered load by a factor of (1− 1

2N) [2].
This can be a paltry drop of 0.05% when 100 TCP
connections share the link, while resulting in a se-
vere 25% drop when there are only two connections.

BLUE [1] uses packet loss and link idle events in
addition to queue size to avoid congestion. BLUE
varies the marking probability, Pm, depending on
the severity of packet loss. However, Pm is de-
creased if the link is observed to be idle, thus main-
taining high link utilization.

While maintaining reasonably low packet loss
and high link utilization, BLUE causes the build-up
of large queues which leads to increased queueing
delay. Also, BLUE, like RED, does not take into ac-
count the number of connections multiplexed across
the link in its congestion notification scheme.

In our AQM scheme, we take both the number
of flows and the RTT of each flow into account to
calculate the congestion-notification probabilities.
We shall see how such a scheme nearly eliminates
queueing delay, and yet maintains high link utiliza-
tion and low packet loss. After presenting in our
algorithm and experimental results in Sections III
and IV respectively, we explain how the flow pa-
rameters in our algorithms can be estimated at the
routers in Section VI.

1Henceforth, by marking, we mean explicitly setting a con-
gestion bit in the packet header or dropping the packet.

2This is a frequently observed phenomena where sources
increase and decrease their congestion windows at the same
time.

III. Algorithm

Our AQM scheme applies the knowledge of the
steady-state behavior of TCP connections at the
router to intelligently mark packets for congestion
notification. By using such a mechanism, a router
provides each connection its fair share of through-
put while preventing packet queues from building
up.

In addition to available network bandwidth,
a TCP connection’s throughput depends on its
round-trip time and the probability with which its
packets are dropped in the network. Specifically,
Mathis et al. [7] show that a connection’s through-
put at steady state satisfies the following equation
under certain simplifying assumptions:

BW =
MSS × c

RTT ×√
p

where BW is the throughput of the connection,
MSS is the maximum segment size, RTT is its
round trip time and p is the packet loss probability.
The constant c depends on the acknowledgement
strategy that is used (delayed or every packet) as
well as on whether packets are assumed to be lost
periodically or at random.

Now, let us consider a scenario where there are
N active flows at a router on a particular outgo-
ing link of capacity L. In our algorithm, a flow is
considered to be active if it has at least one packet
queued at the router for service or the packet for
that flow was recently marked for congestion noti-
fication. Assuming that each flow is transmitting
at a rate greater than or equal to L

N , then the fair
share throughput of each flow is L

N . Substituting
this for bandwidth in the above equation, we get an
expression for loss probability p. Thus, pi for flow
i is:

pi =
(

N × MSSi × C

L × RTTi

)2

Note that this value of pi may exceed 1, and so we
modify the definition of pi to preserve mathematical
consistency to

pi = min

[
1,

(
N × MSSi × C

L × RTTi

)2
]

By using this value of pi as the marking probabil-
ity for congestion notification, GREEN coerces each
flow into sending at its fair rate. Note that unlike
RED or BLUE, where a single marking probability
(pm) is used for every flow, the marking probabil-
ity in GREEN is generally different for each flow
because it depends on characteristics that are flow

specific (MSSi, RTTi). Further, because pi de-
pends on the number of flows, we get the desired
property of congestion notification being more ag-
gressive for large N and less aggressive for small
N .

Often, TCP connections with smaller RTT s are
able to get better throughput than those with
longer RTT s, since their window-increase cycles are
clocked at a faster rate. By including RTT as an
inverse parameter in our calculation, we are able
to eliminate this bias of TCP against connections
with longer RTT s.

IV. Experiments and Evaluation

A router is assumed to have knowledge of the
bandwidth (L) of all outgoing links. N is the num-
ber of flows that have at least one packet queued
at the router or whose packet was just dropped for
congestion notification. The MSS of a flow is esti-
mated by the router on a per-packet basis (assum-
ing that most packets of a flow would be of the same
size). By adopting such an approach, as opposed to
averaging packet sizes from a particular flow over a
certain interval, we reduce the need for flow state.

In our experiments we fix packet sizes at 1KB
in all cases. The value of c, in our model (ran-
dom dropping & delayed acknowledgement) is set
to 0.93 [7]. For the time being, we assume that the
router has some way of determining a flow’s RTT .
Later on, in Section VI, we shall see how this can
be estimated.

To evaluate the performance of GREEN, we run
a number of experiments using the Network Sim-
ulator ns [9] over the network topology shown in
Figure 1. Sources and sinks connect to the routers
over 10Mbps links with propagation delays ranging
from 1ms to 50ms. The bottleneck link has a band-
width of 1Mbps and a one-way propagation delay of

1 ms
5 ms

10 ms
100 ms

1 MbpsBottleneck
 Gateway Gateway

10 Mbps 10 Mbps

1 ms

10 ms

15 ms

Sources

15 ms

Sinks

5 ms

High−Speed

Fig. 1. Simulation Topology

100ms. Up to 500 FTP connections from the left-
most nodes (sources) to the rightmost nodes (sinks)
start randomly within the first second of simulation
and run for 100 seconds. The bottleneck gateway
capacity is one-tenth the capacity of each of the in-

dividual links. By choosing such a configuration,
we can evaluate the robustness of GREEN in an
extremely congested environment at the bottleneck
gateway. All of the performance metrics presented
in the following sections – link utilization, packet
loss and queueing delay – are measured at this bot-
tleneck gateway.

For comparison purposes, we evaluate the per-
formance of GREEN against RED and BLUE over
the same topology. In the first set of experiments,
we simulate all the algorithms using packet drop-
ping rather than marking for congestion notifica-
tion. In Section V we look at the results with
packet marking using Explicit Congestion Notifi-
cation (ECN) [3].

The queue weight in RED, Wq, is set according
to the following equation [5]

Wq = 1 − e
1
C

where C is the link capacity in packets per sec-
ond. Using a packet size of 1KB and a link
capacity of 1Mbps, we set the value of Wq to
be 0.008. Further in RED, queue sizes tend to
stay around Qminthresh in lightly congested situ-
ations and around Qmaxthresh in heavily congested
ones [4]. Thus, to make congestion notification of
RED (in our heavily congested simulation scenario)
more aggressive, we set Qminthresh and Qmaxthresh

to 5 and 15, respectively. In BLUE, the freeze-time
is set to 100ms, and the pm increment and decre-
ment values are set to 0.0025 and 0.00025 respec-
tively. In other words we intentionally pre-configure
RED and BLUE to handle our heavily congested
simulation. In contrast, GREEN requires no such
pre-configuration.

For GREEN, we introduce two parameters -
Qminthresh and slevel. Qminthresh, as in RED, is
the minimum threshold of average queue size, below
which packets are not marked for congestion noti-
fication. This additional parameter preserves link
utilization, particularly when N is low. However,
unlike RED, Qminthresh is an auto-tuning variable
quantity and depends inversely on the number of
flows. Specifically,

Qminthresh =
Qsize

N

Thus, a large number of active flows results in a
lower threshold, allowing us to pursue congestion
notification more aggressively. Large N prevents
the queue from draining in spite of aggressive mark-
ing, and thus link utilization is maintained at a high
level. Conversely, when there are a small number
of flows, Qminthresh is higher and packet dropping

 0

 1

 2

 3

 4

 5

 6

 7

 8 10 12 14 16 18 20

D
ro

pp
in

g
Pr

ob
ab

ilit
y

&
Av

g.
 Q

ue
ue

 S
iz

e

Time (Sec)

Variation of P with respect to Avg Queue Size

Drop Probability
Avg. Queue Size

Stabilization Level

Fig. 2. An illustration of how slevel is equivalent to
Qminthresh

is, therefore, pursued less aggressively. The second
parameter, slevel, or stabilization level is the value
at which queue sizes are to be stabilized. This value
is set manually and independently from Qminthresh.
Note that this is not a performance-tuning param-
eter but a desired level of queue stabilization de-
pending on how much average queueing delay can
be tolerated by the end hosts. Queues are determin-
istically stabilized at slevel, irrespective of the num-
ber of flows. Packets are not marked for congestion
if the average queue size remains below slevel. The
difference between Qminthresh and slevel is that if
the computed value of Qminthresh falls below slevel,
then the effective Qminthresh is set to slevel. Thus,
we have:

Qminthresheff = max(Qminthresh, slevel)

In most cases (i.e., when N is large), Qminthresheff

= slevel. Summarizing,

Pieff =
{

0 if Qavg ≤ Qminthresheff ;
pi if Qavg > Qminthesheff ;

Figure 2 illustrates the equivalence property of
slevel and Qminthresh. The variation of the mark-
ing probability, pi, (plotted on the x axis) is shown
with respect to average queue size. We note that
pi is always 0 as long as Qavg remains below slevel.
However, the value of Qavg does not affect pi when
Qavg is greater than slevel. This value is calcu-
lated from the equation given in the previous sec-
tion. Figure 3 shows the behaviour of the theo-
retical dropping probability (based solely on the
GREEN equation) and the actual drop probabil-
ity (shown as boxes in the graph) with respect to
the variable parameters in the GREEN equation
(N ,RTTi). The actual drop probability is either 0,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

C
al

cu
la

te
d

an
d

Ef
fe

ct
iv

e
D

ro
pp

in
g

Pr
ob

ab
ilit

es

w = f(N,RTT)

Variation of Calculated and Effective Dropping Probabilities with w

Calculated value of P
Effective P

Fig. 3. Behaviour of Calculated and Effective Drop Prob-
ability w.r.t w = f(N, RTT). Effective Drop Probabilty is
zero as long as Qavg < slevel.

when Qavg ≤ slevel, or lies along the theoretical pi

curve when Qavg > slevel.
Figure 4 illustrates the behavior of different

AQM schemes for 100 FTP sources, where slevel

is set to 10 packets. For GREEN, this results in
the queue size hovering around 10 packets, while

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

Time (Sec)

Queue Length for 100 Sources: RED, BLUE, GREEN

Green Queue Size
RED Queue Size
Blue Queue Size

Fig. 4. Evolution of Queue Lengths over time for RED,
BLUE and GREEN (slevel = 10) for 100 Sources.

much higher values and rapid fluctuations are ob-
served in the case of RED and BLUE. Link uti-
lization stays at above 98% for GREEN and above
99% for RED and BLUE. Figure 5 shows the corre-
sponding packet-loss rates. Loss rates are compa-
rable to RED but slightly higher than BLUE. The
loss rates for GREEN, however, can be reduced by
setting slevel to a higher value resulting in conges-
tion notification that is less aggressive. Even when
we increase the number of sources to 500, the queue
size for GREEN remains at slevel. In Section V we
explore how packet losses can be virtually elimi-
nated using ECN.

 0

 20

 40

 60

 80

 100

 40 45 50 55 60

Pa
ck

et
 L

os
s

Pe
rc

en
t

Time (Sec)

Packet Loss for 100 FTP Sources: RED, BLUE, GREEN

Green Pkt Loss
RED Pkt Loss
Blue Pkt Loss

Fig. 5. Packet Loss, RED, BLUE and GREEN, 100 Sources.

A. Discussion

Intuitively we can understand the performance
improvement of GREEN as follows. The router, in
calculating the marking probability of a flow, im-
plicitly awards the flow its fair share of bandwidth.
This allows the packet marking dynamics at the
router to be “in synch” with the sending rate of
the flow. Queues build up when the aggregate send-
ing rate from all flows is more than the bottleneck
bandwidth. By dropping packets based on TCP’s
congestion behavior, the router coerces the flows
into sending at their fair rate, preventing queue
build-up and stabilizing the queue at slevel. Re-
member that slevel in most cases (unless N is very
low) is functionally equivalent to Qminthresh i.e.,
packets are not dropped if Qavg is less than slevel.
Hence, the queue is allowed to grow to slevel before
congestion notification commences. Subsequent to
this, flows send at their fair rate, stabilizing the
queue at slevel after some initial fluctuation. The
time to attain equilibrium depends on the feedback
delay of the network path. Thus, the slevel param-
eter effectively adds an offset to the queue length
below which it is not allowed to drain. In the next
section, we present more results of this determinis-
tic tuning property of GREEN.

B. Tuning Queue Sizes

For many types of application, especially delay-
sensitive ones such as real-time audio and video,
being able to control queueing delay is obviously
a significant benefit. By varying the value of the
stabilization level parameter, slevel, we can deter-
ministically fix the queueing latency for flows that
traverse the router. To illustrate this property, we
set slevel to 2, 5 and 10 packets in three subsequent
experiments. Figure 6 shows how the number of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 40 45 50 55 60 65 70 75 80

Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

Time (Sec)

Queue Length for 500 FTP Sources: RED, BLUE, GREEN

Green - Slevel = 2
Green - Slevel = 5

Green - Slevel = 10
RED
Blue

Fig. 6. Stabilized Queue Lengths for GREEN (with different
slevel values) Compared to RED and BLUE for 500 Sources.

packets at any given time in the queue is precisely
controlled by the value of slevel. Queue sizes are
almost negligible in comparison with RED, where
wide fluctuations are seen, and BLUE, where fre-
quent transitions to drop-tail mode occur due to
queue overflow. Link utilization in all three cases
generally exceeds 90%, with link utilization close to
100%

for GREEN when slevel = 10. The latter result is
not surprising since slevel actually controls the ag-
gressiveness of the congestion-control behavior of
GREEN. A higher threshold of 10 packets results
in nearly 100% link utilization while a lower thresh-
old of two packets drops utilization to around 90%.
This behavior represents a trade-off between link
utilization and queueing delay. We leave this as an
implementation choice – a parameter that can be
easily set by the network service provider.

We note that even for 100% link utilization, the
queue size remains at a very low value (10 packets
in this case) – an acceptable situation in most sce-
narios. Furthermore, the variation in queue size is
very small which effectively eliminates delay jitter
– an important and beneficial property to delay-
sensitive traffic, which can be used in conjunction
with QoS mechanisms where upper bounds on guar-
anteed delay can be provided to the end user.

However, the tunability of slevel is not infinite,
i.e., the queue size cannot be stabilized to arbi-
trarily high levels. In particular, there exists a
certain threshold τ above which the stabilization
mechanism breaks down. τ turns out to be the
bandwidth-delay product of the network path that
the packets traverse from source to destination.
Trying to fix the queue size above τ destroys the
queue-size stability leading to oscillatory behavior.
Stability is attained when aggregate sending rates

are below the link capacity. Setting slevel greater
than τ violates this condition in that the time taken
to drain the queue from such a level is more than
the feedback delay of the control loop. This results
in an aggregate sending rate that is greater than
the bottleneck bandwidth, causing queue build-up.
For the simulation topology used in this paper,
the value of τ is approximately 25 packets. Fig-
ure 7 illustrates how the stabilization property for
queue behavior breaks down as we increase slevel to
greater than τ .

 0

 20

 40

 60

 80

 100

 60 65 70 75 80

Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

Time (Sec)

Queue Length Variation in GREEN for different Stabilisation Levels

Slevel = 10
Slevel = 15
Slevel = 25
Slevel = 30

Fig. 7. An Illustration of Stabilization Break Down for
slevel ≥ τ (∼ 25 packets) for 100 Sources.

V. GREEN with ECN

In Figure 5, packet loss rates for GREEN aver-
aged 30% in the steady-state. Revisiting our equa-
tion, namely,

p =
(

N × MSS × C

L × RTT

)2

we see that the dropping probability increases
quadratically with the number of active flows. This
leads to high packet loss rates in heavily con-
gested scenarios such as ours. Although loss-
rates for GREEN are comparable to RED 5, and
queue-size stability is achieved, we seek to address
this problem throughexplicit congestion notification
(ECN) [3] instead of packet dropping as the means
for congestion notification. In ECN, the IP header
of a packet from an ECN-capable host contains a
bit that is set by the router when it detects incipient
congestion, or in our case, for proactive congestion
notification. A host, upon reception of an ECN sig-
nal,3 responds in the same way that it would to a

3The ECN signal from the router is conveyed to the send-
ing host by an IP header bit that is set by the receiving host
in the ACK packet.

lost packet, i.e., reduce its congestion window by
half. Thus, ECN reduces packet losses and the as-
sociated retransmitted traffic. While using ECN
leads to much lower loss rates, we can intuitively
see how it would adversely affect queue stability.
Inspecting Figure 5, we find that the packet loss
rate for GREEN without ECN was about 30%, i.e.,
approximately a third of the packets were dropped
for the purpose of congestion notification. In a sce-
nario where ECN is used, all these dropped packets
would be marked

0

10

20

30

40

50

60

0 20 40 60 80 100

Pa
ck

et
 L

os
s

Pe
rc

en
t

Simulation Time (Sec)

Packet Loss with ECN for 100 FTP Sources: RED, BLUE, GREEN

Green+ECN
RED+ECN
Blue+ECN

Fig. 8. Comparison of Packet-Loss Rates for ECN-enabled
RED,BLUE and GREEN for 100 Sources.

and then queued, resulting in greater queue sizes,
and a greater number of active flows. This causes
the marking probability p to increase (quadrati-

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h

Time (Sec)

Queue Length Behaviour for Red, Blue and GREEN with ECN : 100 FTP sources

Blue with ECN
RED with ECN

Green with ECN

Fig. 9. Evolution of Queue Length for ECN-enabled RED,
BLUE and GREEN for 100 Sources.

cally), causing aggressive marking, and hence, lead-
ing to fluctuating queue sizes. Figure 8 compares
packet loss rates for RED, BLUE and GREEN,
where ECN has been enabled for all sources as
well as at the bottleneck gateway. By using ECN,

 0

 10000

 20000

 30000

 40000

 50000

 60000

 40 45 50 55 60

Th
ro

ug
hp

ut
 (B

yt
es

)

Simulation Time (Sec)

A Sample of Throughput Jitter with ECN enabled for 100 Sources: RED, BLUE, GREEN

Green+ECN
RED+ECN
Blue+ECN
Fair Share

Fig. 10. Throughput Variation for ECN-enabled RED,
BLUE and GREEN for 100 Sources.

GREEN eliminates almost all packet loss, whereas
RED demonstrates a 15% loss rate and BLUE av-
erages a 5% packet loss with peaks as high as 20%.
As expected, however, queue sizes in ECN-enabled
GREEN are prone to fluctuation (Figure 9). Queue
sizes, and consequently, path delays are still well
below those for either RED or BLUE. Applications
are often able to maintain smooth output in the
presence of delay jitter through buffering, as long
as throughput remains more or less the same (Fig-
ure 10). We note from previous results that even
in the absence of ECN, GREEN performs favorably
compared to RED and BLUE, albeit with slightly
higher packet loss. Since ECN is not widely de-
ployed in today’s Internet, we believe that this is
another important advantage of GREEN over the
other AQM schemes.

VI. Estimating Flow Parameters

Up until now, we assumed that the router had
knowledge of the flow parameters required to cal-
culate p, namely L, MSS, N , C and RTT . In
this section, we briefly explain how the router can
estimate these values.

L: Link Bandwidth. A router is assumed to have
knowledge of the bandwidth capacity of all its at-
tached links.

MSS: Maximum Segment Size. MSS is flow spe-
cific and can be estimated by maintaining flow state
where the segment sizes are averaged over the du-
ration of the flow. Flow state can be maintained
in a method that is similar to Stochastic Fairness
Queueing [8], whereby each flow is hashed onto a
particular memory location. Hash collisions are ig-
nored, thus keeping the time required for reading
and updating flow state at 0(1). Alternatively, we
can calculate this on a per-packet basis assuming

that most incoming packets of a flow are likely to
be of the same size. In our experiments we chose
the latter method since packet sizes were fixed.

N: Number of Active Flows. The router deter-
mines N by hashing flows onto the flow-state struc-
ture. Each time a packet is queued or dequeued for
that flow, a counter variable (which keeps track of
the number of packets queued for that particular
flow) is updated. When the counter reaches 0, the
number of active flows is decremented. When a
new flow starts and its packet is queued, it will be
hashed onto an “inactive” location, and the number
of active flows is subsequently incremented.

c: Modeling Constant. Depending on the as-
sumptions in the model, c generally varies from 0.7
to 1.3. In our experiments (delayed mack and ran-
dom loss), we set the value to 0.93 [7].

RTT: Round-Trip Time. This is, by far, the most
difficult parameter to estimate with any degree of
accuracy. Below we briefly present two solutions.
The first solution involves a minor modification to
the end-host software, while the second one involves
router modifications. For a more detailed expla-
nation of these mechanisms, the reader is referred
to [12].

The first scheme makes use of the fact that the
best estimates of RTT occur at the TCP end host.
Using the IP options available, the sender can insert
the RTT into a pre-specified field in the IP header.
This value can then be utilized by routers along
the way where GREEN is deployed. The advan-
tage to this method is that it involves only a small
change to the end-host software and can be easily
deployed. The disadvantage of this method is that
many non-TCP transport layer protocols like UDP,
may not have any built-in mechanisms for estimat-
ing RTT . In such a case, routers may “punish”
such non-conforming flows by awarding them the
smallest observed RTT (since Pm is inversely pro-
portional to RTT) among all flows. We believe that
this punishment feature and the low-latency prop-
erty of GREEN (mainly benefitting UDP-based ap-
plications such as real-time multimedia) would be
incentives for UDP and similar protocols to keep a
measure of their RTT values and insert these into
the outgoing IP headers, as well as to adopt TCP-
friendly congestion-control mechanisms. Although
senders can also provide false information regarding
their RTT s, and thus, get greater than fair share
of bandwidth, this would require tampering with
the protocol stack at the end-host software. While
such a situation may not be a large-scale problem,
it still remains a security issue.

The second scheme involves a small degree of

work at the routers. The details of this scheme
are beyond the scope of this paper, and the reader
is referred to [12]. The basic idea is to have each
router add the propagation delay of the outgoing
link to a pre-specified field in the IP header. This
field is initialized at the edge routers and is incre-
mented at each hop. Assuming symmetric paths,
routers will have partial one way trip-times (OTT s)
of the data packets going from source to destination
and of ACK packets in the reverse direction. These
values are hashed onto the same memory location
using commutative hash functions on (source,dest)
IP-address pair. Adding the two partial OTT val-
ues and doubling the result will give us the RTT for
that flow with some error caused due to the differ-
ence in queueing delays between the data packets
and acknowledgement packets. However we would
still have a much better estimate of RTT than by
simply doubling the delay of the attached outgo-
ing link. This method however fails to work in
the presence of path asymmetries, which have been
shown to exist in the Internet with increasing fre-
quency [11]. In such a case, the best the router
can do is to double the partial OTT s for an RTT
approximation.

VII. Conclusion

In this paper, we have shown how applying the
knowledge of steady-state TCP congestion control
behavior at the routers helps prevent congestion
in the network much more effectively. We found
that we are able to deterministically stabilize the
queue size, while maintaining optimal throughput
and link utilization. Using this algorithm, GREEN
can fix an upper bound on queueing delay – a useful
property for implementing QoS schemes. Packet-
loss rates can further be reduced when ECN rather
than packet-dropping is used for congestion no-
tification. Future investigations will include how
the mechanism behaves for short-lived connections
(so-called “web mice”) with mixtures of different
traffic types and in the presence of two-way traf-
fic. The applications that stand to benefit the
most from the low-latency/high-throughput prop-
erty of GREEN are delay-sensitive traffic such as
streaming real-time audio and video. Since many
of these are UDP-based, we believe that this bene-
fit provides incentive for UDP and similar transport
layer protocols to adopt TCP friendliness in their
congestion-control mechanisms.

References

[1] W. Feng, D. Kandlur, D. Saha, K. Shin. BLUE: A New
Class of Active Queue Management Algorithms. In UM
CSE-TR-387-99, April 1999.

[2] W. Feng, D. Kandlur, D. Saha, K. Shin. A Self-
Configuring RED Gateway. In Proceedings of IEEE
INFOCOM, March 1999.

[3] S. Floyd. TCP and Explicit Congestion Notification.
Computer Communication Review, 24(5):10-23, Octo-
ber 1994.

[4] S. Floyd and V. Jacobson. Random Early Detec-
tion Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, August
1993.

[5] S. Floyd, R. Gummadi and S. Shenker. Adaptive RED:
An Algorithm for Increasing the Robustness of RED’s
Active Queue Management. Under Submission, August
2001.

[6] V. Jacobson. Congestion Avoidance and Control. In
Proceedings of the SIGCOMM 1988, pages 314–332,
August 1988.

[7] M. Mathis, J. Semke, J. Mahdavi, T. Ott. The Macro-
scopic Behavior of the TCP Congestion-Avoidance Al-
gorithm. Computer Communication Review, Vol.27,
No.1, July 1997.

[8] P. McKenney. Stochastic Fairness Queueing. In Pro-
ceedings of IEEE INFOCOM, March 1990.

[9] Network Simulator. http://www.isi.edu/nsnam/ns.
[10] T. Ott, J. Kemperman, M. Mathis. The Station-

ary Behavior of Ideal TCP Congestion Avoidance.
ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps, August
1996.

[11] V. Paxson. End-to-End Routing Behaviur in the Inter-
net. IEEE/ACM Transactions on Networking, Vol.5,
No.5, October 1997.

[12] S. Thulasidasan. An Algorithm for Estimating End-to-
End Path Delays at Routers. In Progress.

